Discussion Problems Week 13

November 17, 2020

Group 1

The graph of $2\left(x^{2}+y^{2}\right)^{2}=25 x y^{2}$, shown below, is a double folium. Find the equation of the tangent line at the point $(2,1)$.

Group 2

A pulley is on the edge of a dock, 8 ft above the water level. (See the figure below.) A rope is being used to pull in a boat. The rope is attached to the boat at water level, and is being retracted at a rate of 1 ft per second. Find the rate at which the boat is approaching the dock when it is 8 ft from the dock.

Group 3

Use the differential to approximate each quantity below. Then use a calculator to find the actual value, and write the absolute value of the difference to four decimal places.

1. $\sqrt{145}$
2. $e^{0.01}$
3. $\ln 0.98$

Group 4

Drug Concentration: The concentration of a certain drug in the bloodstream t hours after being administered is

$$
C(t)=\frac{5 t}{9+t^{2}}
$$

Use the differential to approximate the changes in concentration for the following changes in t.

1. 1 to 1.5
2. 2 to 2.25

Group 5

Find the antiderivatives of the following functions up to some constant C :

1. $5 x^{2}-6 x+3$
2. $\frac{7}{z+1}$
3. $v^{2}-e^{3 v}$

Extra Problems

1. Biology: If the rate of excretion of a biochemical compound by an organism is given by

$$
f^{\prime}(t)=0.01 e^{-0.01 t}
$$

the total amount secreted after t minutes is $f(t)$.
(a) Find an expression for $f(t)$, assuming that 0 units are excreted at time $t=0$.
(b) How many units will have been excreted after 10 minutes?
2. Respiratory Rate: Researchers have found a correlation between respiratory rate and body mass in the first three years of life. This correlation can be expressed by the function

$$
\log R(w)=1.83-0.43 \log (w)
$$

(a) Find $R^{\prime}(w)$ using implicit differentiation.
(b) Find $R^{\prime}(w)$ by first solving the equation for $R(w)$.

